Электрический ток в металлах презентация к уроку по физике (11 класс) на тему. Презентация по физике на тему "электрический ток в металлах" Электрический ток в металлах скачать презентацию


Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Электрический ток в металлах 11 класс Учитель Кечкина Н.И. МБОУ «Средняя школа № 12» г. Дзержинск

Закон Ома с точи зрения электронной теории Электрический ток в металлах обусловлен движением свободных электронов. Опыт Э. Рикке Результат: проникновение меди в алюминий не обнаружено. Опыты Л.И. Мандельштам и Н.Д. Папалекси 1912 г. Р. Толмен и Т. Стюарт 1916 г. Ц- цилиндр; Щ – щетки (контакты); ОО ’ – изолированные полуоси Результат: при остановке стрелка гальванометра отклонялась, фиксируя ток. По направлению тока определили – по инерции движутся отрицательные частицы. По величине заряда – электроны.

Длина свободного пробега λ – среднее расстояние между двумя последовательными столкновениями электронов с дефектами. Электрическое сопротивление нарушение периодичности кристаллической решетки. Причины: тепловое движение атомов; наличие примесей. Рассеивание электронов. Мера рассеивания Классическая электронная теория Лоренца (электрическая проводимость металлов): В проводнике имеются свободные электроны, которые движутся непрерывно и хаотично; Каждый атом теряет 1 электрон, превращаясь в ион; λ равна расстоянию между ионами в кристаллической решетке проводника. e – заряд электрона, Кл n – количество электронов, прошедших через поперечное сечение проводника в ед. времени m – масса электрона, кг u - средняя квадратичная скорость беспорядочного движения электронов, м/с γ

Закон Джоуля-Ленца с точи зрения электронной теории γ Закон джоуля-Ленца в дифференциальной форме. Классическая электронная теория Лоренца объясняет законы Ома и Джоуля-Ленца, которые подтверждаются экспериментально. Ряд выводов не подтверждается экспериментально. НО Удельное сопротивление (величина обратная проводимости), пропорциональна корню квадратному из абсолютной температуры. Классическая электронная теория Лоренца имеет границы применимости. Опыты ρ~ T


По теме: методические разработки, презентации и конспекты

Электрический ток в металлах

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты принадлежат русским физи...

Тема «Электрический ток в металлах»Цель урока: Продолжить изучение природы электрического тока в металлах, экспериментальным путем изучить действие электрического тока.Задачи урока: Образовательная – ...

Тема урока.Электрический ток в металлах.

Урок изучения нового с элементами контроля и повторения.

Оборудование: презентация, установка для опыта по изменению сопротивления в зависимости от температуры.

Цели и задачи. 1. Сформировать знания основ электронной теории проводимости металлов, опытного обоснования и применения теории на практике.

2. Расширить кругозор учащихся рассказом о явлении сверхпроводимости.

3.Научить применять знания зависимости сопротивления от температуры в решении задач.

4.Воспитывать патриотические чувства через ознакомление с историей открытий в области физики твердого тела.

План урока. (по слайдам)

1.Сегодня на уроке.

2.Повторим. Даны вопросы, знания которых требуется при изучении нового.

3. Изучение нового: а) электропроводносчть разных веществ;б) природа носителей зарядов в металлах; в) теория электропроводности металлов; г) зависимость сопротивления от температуры; д) термометры сопротивления; е) сверхпроводимость и ее применение.

4. Контрольный тест. (Проверка после клика мышью).

5. Закрепление. Предложены 3 задачи на зависимость сопротивления от температуры. Ответы проявляются после клика мышью. Необходимые постоянные параметры ученики берут из таблиц.

Просмотр содержимого документа
«Презентация к уроку "Электрический ток в металлах", 10 класс.»

Электрический ток в металлах

Савватеева Светлана Николаевна, учитель физики МБОУ «Кемецкая СОШ» Бологовского района Тверской области.


СЕГОДНЯ НА УРОКЕ

Тайное становится явным. Что скрывается за понятием « Носители тока в металлах» ?

Каковы трудности классической теории электропроводности металлов?

Почему лампы накаливания перегорают?

Почему они перегорают при включении?

Как потерять сопротивление?


ПОВТОРИМ

  • Что такое электрический ток?
  • Каковы условия существования тока?
  • Какие действия тока вам известны?
  • Что принято за направление тока?
  • Какой величиной определяется сила тока в электрической цепи?
  • Что принимают за единицу силы тока?
  • От каких величин зависит сила тока?
  • Какова скорость распространения тока в проводнике?
  • Какова скорость упорядоченного движения электронов?
  • Зависит ли сопротивление от силы тока и напряжения?
  • Как формулируется закон Ома для участка цепи и для полной цепи?


ПРИРОДА НОСИТЕЛЕЙ ЗАРЯДА В МЕТАЛЛАХ

Опыт Рикке (нем.) – 1901 г. Год! M = const, это не ионы!

Мандельштам и Папалекси (1913 г.)

Стюарт и Толмен (1916 г.)

По направлению тока -

По І J I - q ⁄ m = e ⁄ m } это электроны!

Электрический ток в металлах -- направленное движение электронов.


Теория электропроводимости металлов

П. Друзе, 1900 г.:

  • свободные электроны – « электронный газ»;
  • электроны движутся в соответствие с законами Ньютона;
  • свободные электроны сталкиваются с ионами крист. решетки;
  • при столкновении электроны передают ионам свою кинетическую энергию;
  • средняя скорость пропорциональна напряженности и, следовательно разности потенциалов;

R= f ( ρ, l, s, t)


термометры сопротивления

Преимущества: помогают измерять очень низкие и очень высокие температуры.


сверхпроводимость

Ртуть в жидком гелии

Объяснение – на основе квантовой теории.

Д. Бардин, Л. Купер, Д. Шриффер (амер.) и

Н. Боголюбов (сов. уч. В 1957 г.)



А также:

  • получение больших токов, магнитных полей;
  • передача электроэнергии без потерь.

Контрольный тест

  • Как движутся свободные электроны в металлах?

А. В строгом определенном порядке. Б. Беспорядочно. В. Упорядоченно.

  • Как движутся свободные электроны в металлах под действием электрического поля?

А. Беспорядочно. Б. Упорядоченно. В. Упорядоченно в направлении электрического поля. Г. Упорядоченно в направлении противоположном электрическому полю.

  • . Какие частицы располагаются в узлах кристаллической решетки металлов и какой заряд они имеют?

А. Отрицательные ионы. Б. Электроны. В. Положительные ионы.

  • Какое действие электрического тока используется в электролампах?

А. Магнитное. Б. Тепловое. В. Химическое. Г. Световое и тепловое.

  • Движение каких частиц принято за направление тока в проводнике?

А.Электронов. Б. Отрицательных ионов. В. Положительных зарядов.

  • Почему металлы нагреваются при прохождении по ним тока?

А. Свободные электроны сталкиваются друг с другом. Б. Свободные электроны сталкиваются с ионами. В. Ионы сталкиваются с ионами.

  • Как изменяется сопротивление металлов при охлаждении их?

А. Увеличивается. Б. Уменьшается. В. Не изменяется.

1 . Б. 2.Г. 3.В. 4.Г. 5.В. 6.Б. 7.Б.


РЕШИ ЗАДАЧИ

1.Электрическое сопротивление вольфрамовой нити электрической лампы при температуре 23 °C равно 4 Ом.

Найдите электрическое сопротивление нити при 0°C.

(Ответ: 3,6 Ом)

2. Электрическое сопротивление вольфрамовой нити при 0°C равно 3,6 Ом. Найдите электрическое сопротивление

При температуре 2700 К.

(Ответ: 45,5 Ом)

3. Электрическое сопротивление проволоки при 20 °C равно 25 Ом, при температуре 60°C равно 20 Ом. Найдите

Температурный коэффициент электрического сопротивления.

(Ответ: 0,0045 К¯¹)

ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ

Слайд 2

Основы электронной теории проводимости В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов. Пауль Друде Карл Людвиг - немецкий физик Хендрик Антон Лоренц- голландский физик

Слайд 3

Движение электронов подчиняется законам классической механики. Электроны друг с другом не взаимодействуют. Электроны взаимодействуют только с ионами кристаллической решётки, взаимодействие это сводится к соударению. В промежутках между соударениями электроны движутся свободно. Электроны проводимости образуют «электронный газ», подобно идеальному газу. «Электронный газ» подчиняется законам идеального газа. При любом соударении электрон передаёт всю накопленную энергию. Классическая электронная теория Друде - Лоренца.

Слайд 4

Электрический ток в металлах Ионы кристаллической решетки металла не принимают участие в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника, что не наблюдается. Например, в опытах Э. Рикке (1901 г.) масса и химический состав проводника не изменялся при прохождении тока в течении года.

Слайд 5

Вывод: Не происходит переноса вещества = > 1) Ионы металла не принимают участия в переносе электрического заряда. 2) Носители заряда - частицы, входящие в состав всех металлов Опыт Рикке 1901 г.

Слайд 6: Электроны взаимодействуют не друг с другом, а с ионами кристаллической решётки. При каждом соударении электрон передаёт свою кинетическую энергию

Слайд 7

Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1913 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами - электронами.

Слайд 8

Опыт Мандельштама и Папалекси Вывод: Носители электрического заряда движутся по инерции 1913 г.

Слайд 9

Опыт Толмена и Стюарта Выводы: Носителями заряда в металле являются отрицательно заряженные частицы. Отношение = > Электрический ток в металлах обусловлен движением электронов 1916 г.

10

Слайд 10: Ионы совершают тепловые колебания, вблизи положения равновесия – узлов кристаллической решётки. Свободные электроны движутся хаотично и при своём движении сталкиваются с ионами кристаллической решётки

11

Слайд 11

Металлический проводник состоит из: положительно заряженных ионов, колеблющихся около положения равновесия, и 2) свободных электронов, способных перемещаться по всему объему проводника. В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки. Совокупность этих электронов можно приближенно рассматривать как некий электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с.

12

Слайд 12

Зависимость сопротивления проводника R от температуры: При нагревании размеры проводника меняются мало, а в основном меняется удельное сопротивление. Удельное сопротивление проводника зависит от температуры: где ро - удельное сопротивление при 0 градусов, t - температура, - температурный коэффициент сопротивления (т.е. относительное изменение удельного сопротивления проводника при нагревании его на один градус)

13

Слайд 13

Для всех металлических проводников α > 0 и слабо изменяется с изменением температуры. Для большинства металлов в интервале температур от 0 ° до 100 °С коэффициент α изменяется от 3,3⋅10–3 до 6,2⋅10–3 К–1 (таблица 1). У химически чистых металлов Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например, манганин и константан. Их температурные коэффициенты сопротивления очень малы и равны соответственно 1⋅10–5 К–1 и 5⋅10–5 К–1.

14

Слайд 14

Таким образом, для металлических проводников с ростом температуры увеличивается удельное сопротивление, увеличивается сопротивление проводника и уменьшается эл.ток в цепи. Сопротивление проводника при изменении температуры можно рассчитать по формуле: R = Ro (1 + t) где Ro - сопротивление проводника при 0 градусов Цельсия t - температура проводника - температурный коэффициент сопротивления

15

Слайд 15: Сопротивление проводника

Сопротивление - это физическая величина, характеризующая степень противодействия проводника направленному движению зарядов. Удельное сопротивление – это сопротивление цилиндрического проводника единичной длины и единичной площади поперечного сечения. Сверхпроводимость – физическое явление, заключающееся в скачкообразном падении сопротивления до нуля при некоторой критической температуре (Т кр) – удельное сопротивление, - длина проводника, S - площадь поперечного сечения = (1 + ∆ Т) - удельное сопротивление при t =20 0 С; - температурный коэффициент сопротивления = 1/ 273 0 К -1 ∆ Т – изменение температуры Т,К 0 металл сверхпроводник Т кр 293

16

Слайд 16

Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Т к, характерной для данного материала. С. обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников.

17

Слайд 17

В 1911 году голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля.

18

Слайд 18

Г. Камерлинг-Оннес был удостоен Нобелевской премии по физике 1913 г. «за исследования свойств вещества при низких температурах». В дальнейшем было выяснено, что более 25 химических элементов - металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама - 0,012 К, самое высокое у ниобия - 9 К. Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au2Bi, PdTe, PtSb и другие. До 1986 г. были известны сверхпроводники, обладающие этим свойством при очень низких температурах - ниже –259 °С. В 1986-1987 годах были обнаружены материалы с температурой перехода в сверхпроводящее состояние около –173 °С. Это явление получило название высокотемпературной сверхпроводимости, и для его наблюдения можно использовать вместо жидкого гелия жидкий азот.

19

Слайд 19: Сверхпроводимость

Академик В.Л. Гинзбург, нобелевский лауреат за работы по сверхпроводимости

20

Слайд 20: Сверхпроводимость металлов и сплавов

У многих металлов и сплавов при температурах, близких с T =0 К, наблюдается резкое уменьшение удельного сопротивления – это явление называется сверхпроводимостью металлов. Оно было обнаружено голландским физиком Х.Камерлингом – Онессом в 1911 году у ртути (Т кр =4,2 о К). Т P 0

21

Слайд 21: Общие сведения

Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов. Сверхпроводящие свойства зависят от типа кристаллической структуры. Изменение её может перевести вещество из обычного в сверхпроводящее состояние. Критические температуры изотопов элементов, переходящих в сверхпроводящее состояние, связаны с массами изотопов соотношением: Т э (М э) 1/2 = const (изотопический эффект) Сильное магнитное поле разрушает эффект сверхпроводимости. Следовательно, при помещении в магнитное поле свойство сверхпроводимости может исчезнуть.

22

Слайд 22: Реакция на примеси

Введение примеси в сверхпроводник уменьшает резкость перехода в сверхпроводящее состояние. В нормальных металлах ток исчезает примерно через 10 -12 с. В сверхпроводнике ток, может циркулировать годами (теоретически 105 лет!).

23

Слайд 23: Физическая природа сверхпроводимости

Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений Они были представлены в 1957 году американскими учеными Дж.Бардиным, Л.Купером, Дж.Шриффером и советским академиком Н.Н. Боголюбовым. В 1986 году была открыта высокотемпературная сверхпроводимость соединений лантана, бария и др. элементов (Т= 100 0 К - это температура кипения жидкого азота).

24

Слайд 24

Однако нулевое сопротивление - не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю.

Отталкиваясь от неподвижного сверхпроводника, магнит всплывает сам и продолжает парить до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «увидит» магнит обратной полярности точно такого же размера, что и вызывает левитацию.

27

Слайд 27: Применение сверхпроводимости

1.Сооружаются мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле без затрат электроэнергии на длительном интервале времени, т.к. выделения теплоты не происходит. 2.Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических игенераторах, преобразующих энергию струи раскаленного ионизированного газа, движущегося в магнитном поле, в электрическую энергию. 3.Высокотемпературная сверхпроводимость в недалеком будущем приведет к технической революции в радиоэлектронике, радиотехнике. 4. Если удастся создать сверхпроводники при комнатной температуре, то генераторы и электродвигатели станут исключительно компактны и передавать электроэнергию будет возможно на большие расстояния без потерь.

28

Последний слайд презентации: ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ: Используемые ресурсы:

http://www.physbook.ru/index.php/ Т._Электронная_проводимость_металлов http://class-fizika.narod.ru/10_9.htm

Оглавление Что такое электрический ток? Что такое электрический ток? Явлениям, которые сопровождают электрический ток Явлениям, которые сопровождают электрический ток Опыт Толмена и Стюарта Опыт Толмена и Стюарта Классическая электронная теория Классическая электронная теория Потенциальный барьер Потенциальный барьер Сверхпроводимость Сверхпроводимость Высокотемпературная сверхпроводимость Высокотемпературная сверхпроводимость


Что такое электрический ток? Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.


Явления, которые сопровождают электрический ток 1. проводник, по которому течет ток, нагревается, 2. электрический ток может изменять химический состав проводника, 3. ток оказывает силовое воздействие на соседние токи и намагниченные тела 1. проводник, по которому течет ток, нагревается, 2. электрический ток может изменять химический состав проводника, 3. ток оказывает силовое воздействие на соседние токи и намагниченные тела


Опыт Толмена и Стюарта (ч1) Схема опыта Толмена и Стюарта показана на рисунке. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра. Схема опыта Толмена и Стюарта показана на рисунке. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.


(ч2) При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью Eст поля сторонних сил: При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью Eст поля сторонних сил:сторонней силысторонней силы


(ч3) Следовательно, в цепи при торможении катушки возникает электродвижущая сила, равная: Следовательно, в цепи при торможении катушки возникает электродвижущая сила, равная: где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q, равный: где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q, равный:


(ч4) Здесь I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ0 – начальная линейная скорость проволоки. Здесь I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ0 – начальная линейная скорость проволоки. Отсюда удельный заряд e / m свободных носителей тока в металлах равен: Отсюда удельный заряд e / m свободных носителей тока в металлах равен:


(ч5) Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны. Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны. По современным данным модуль заряда электрона (элементарный заряд) равен: По современным данным модуль заряда электрона (элементарный заряд) равен: а его удельный заряд есть: а его удельный заряд есть:


(ч6) Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема. Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.


Классическая электронная теория Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла


Потенциальный барьер Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера. Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.


Сверхпроводимость Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х. Каммерлинг-Оннесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах. Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х. Каммерлинг-Оннесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.


Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи. Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи. Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений. Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений. Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении произошел в 1986 году, когда было обнаружено, что у одного сложного керамического соединения Tкр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении произошел в 1986 году, когда было обнаружено, что у одного сложного керамического соединения Tкр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К).




Высокотемпературная сверхпроводимость Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu– O с критической температурой 125 К. Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu– O с критической температурой 125 К. В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей. В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей. Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен. Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.



1 слайд

Электрический ток в металлах. Беляева Татьяна Васильевна МОУ «Высокоярская сош» Томская область

2 слайд

На рисунке 1 изображены условные обозначения, применяемые на схемах Каким номером обозначены…. I пересечение проводов?. II ключ? III электрический звонок? IV плавкий предохранитель? V соединение проводов? VI потребители электроэнергии?

3 слайд

Из каких частей состоит электрическая цепь, изображенная на рисунке? 1.Элемент, выключатель, лампа, провода. 2. Батарея элементов, звонок, выключатель, провода. 3. Батарея элементов, лампа, выключатель, провода.

4 слайд

Почему не горит исправная лампа в первой цепи при замыкании ключа? (Рис. 1) Почему не звенит звонок во второй цепи при замыкании цепи? (Рис. 2)

5 слайд

Где надо расположить источник тока, чтобы при замыкании ключа К1 зазвенел звонок, а при замыкании ключа К2 загорелась лампа? (Рис. 3)

6 слайд

Техника безопасности: При работе с электрическими цепями необходимо соблюдать правила по технике безопасности. Недопустимо касаться оголенных проводников, неисправных участков цепи и полюсов источника.

7 слайд

Как можно избежать действия электрического тока при случайном прикосновении к электроприбору, которое оказалось под напряжением? Для этого необходимо заземление, так как земля является проводником и, благодаря своим огромным размерам, может удерживать большой заряд. Из каких материалов выполняется заземление? Заземление выполняют из металла. Почему предпочитают именно эти вещества, мы ответим после изучения новой темы “Электрический ток в металлах”. Запишите тему урока в тетрадь.

8 слайд

Что называется металлом? Самое известное из ранних определений металла было дано в середине XVIII века М.В. Ломоносовым: “Металлом называется светлое тело, которое ковать можно. Таких тел только шесть: золото, серебро, медь, олово, железо и свинец”. Спустя два с половиной века многое стало известно о металлах. К числу металлов относится более 75% всех элементов таблицы Д. И. Менделеева, и подобрать абсолютно точное определение для металлов – почти безнадежная задача.

9 слайд

Вспомним строение металлов Модель металла - кристаллическая решетка, в узлах которой частицы совершают хаотичное колебательное движение.

10 слайд

Итак, в металле есть свободные электроны. Это является одним из условий существования электрического тока. Перечислите все условия необходимые для существования электрического тока?

11 слайд

Как же будут двигаться свободные электроны при наличии электрического поля? Электрический ток протекает по проводнику благодаря наличию в нем свободных электронов, сорвавшихся с атомных орбит

12 слайд

упорядоченное движение свободных электронов в металлах под действием электрического поля называется электрическим током в металлах. Как вы считаете, смещаются ли в металле другие частицы – ионы?

13 слайд

Опыт, проведенный немецким ученым физиком Рикке в 1901 году Проводники одинаковые по объему и форме два из меди и один из алюминия последовательно соединены. В течение одного года в цепи существовал электрический ток, характеристики которого не изменялись. Во время этого процесса степень интенсивности явления диффузии, которое происходит при соприкосновении металлов, была такой же, как и при отсутствии электрического тока в цепи. Таким образом, опыт подтвердил выводы теории: электрический ток в цепи не сопровождается переносом вещества, носителями электрического заряда в металлах являются свободные электроны.







2024 © vadimavva.ru.