Закон гомологических рядов в наследственной изменчивости Н.И. Вавилова


Деятельность Н. И. Вавилова

Выдающийся советский ученый-генетик Николай Иванович Вавилов внес большой вклад в развитие отечественной науки. Под его руководством воспитывалась целая плеяда видных отечественных ученых. Исследования, проводившиеся Н.И.Вавиловым и его учениками, дали возможность сельскохозяйственной науке овладеть новыми методами поиска диких видов растений в качестве исходного материала для селекции, заложили теоретические основы советской селекции.

Замечание 1

На основе огромного количества собранного коллекционного материала было сформулировано учение о центрах происхождения культурных растений. А образцы посевного материала, собранные Вавиловым и его соратниками, обеспечили широкий фронт генетических исследований и селекционной работы.

Именно благодаря анализу собранных материалов был сформулирован знаменитый закон гомологических рядов.

Суть закона гомологических рядов наследственной изменчивости

В ходе многолетнего изучения диких и культурных форм растительности на пяти материках Н.И. Вавилов сделал вывод, что изменчивость близких по происхождению видов и родов осуществляется сходными путями. При этом образуются так называемые ряды изменчивости. Эти ряды изменчивости настолько правильные, что, зная ряд признаков и форм в пределах одного вида можно предвидеть нахождение этих качеств у других видов и родов. Чем ближе родство, тем полнее сходство в рядах изменчивости.

Например, у арбуза, тыквы и дыни форма плода может быть овальной, круглой, шарообразной, цилиндрической. Окраска плода может быть светлой, темной, полосатой или пятнистой. Листья у всех трех видов растений могут быть цельными или глубокорассеченными.

Если рассматривать злаки, то из $38$ исследуемых признаков, характерных для злаков:

  • у ржи и у пшеницы обнаружено $37$,
  • у ячменя и овса - $35$,
  • у кукурузы и риса – $32$,
  • у проса – $27$.

Знание этих закономерностей позволяет предвидеть проявление определенных признаков у одних растений. На примере проявления этих признаков у других, родственных им растений.

В современной трактовке формулировка данного закона гомологических рядов наследственной изменчивости выглядит следующим образом:

«Родственные виды, роды, семейства обладают гомологичными генами и порядками генов в хромосомах, сходство которых тем полнее, чем эволюционно ближе сравниваемые таксоны».

Эту закономерность Вавилов установил для растений. Но последующие исследования показали, что закон имеет универсальный характер.

Генетическая основа закона гомологических рядов наследственности

Генетической основой выше упомянутого закона является то обстоятельство, что в сходных условиях близкородственные организмы могут одинаково реагировать на факторы внешней среды. А биохимические процессы у них протекают приблизительно одинаково. Эту закономерность можно сформулировать таким образом:

«Степень исторической общности организмов прямо пропорциональна количеству общих генов у групп, которые сравниваются».

Так как генотип близкородственных организмов подобен, то и изменения этих генов в ходе мутаций могут быть подобными. Внешне (фенотипически) это проявляется как одинаковый характер изменчивости у близких видов, родов и т.п.

Значение закона гомологических рядов наследственности

Закон гомологических рядов имеет большое значение как для развития теоретической науки, так для практического применения в сельскохозяйственном производстве. Он дает ключ к пониманию направления и путей эволюции родственных групп живых организмов. В селекции на его основе планируют создание новых сортов растений и пород домашних животных с определенной совокупностью признаков, на основе изучения наследственной изменчивости близких видов.

В систематике организмов этот закон позволяет находить новые ожидаемые формы организмов (виды, роды, семейства) с определенной совокупностью признаков при условии, если подобная совокупность была обнаружена у родственных систематических группах.

Закон гомологических рядов Вавилова

Важным теоретическим обобщением исследований Н. И. Вавилова является разработанное им учение о гомологических рядах. Согласно сформулированному им закону гомологических рядов наследственной изменчивости, не только близкие в генетическом отношении виды, но и роды растений образуют гомологические ряды форм, т. е. в генетической изменчивости видов и родов существует определенный параллелизм. Близкие виды благодаря большому сходству их генотипов (почти одинаковому набору генов) обладают сходной наследственной изменчивостью. Если все известные вариации признаков у хорошо изученного вида расположить в определенном порядке, то и у других родственных видов можно обнаружить почти все те же вариации изменчивости признаков. Например, приблизительно одинакова изменчивость остистости колоса у мягкой, твердой пшеницы и ячменя.

Трактовка Н.И.Вавилова. Виды и роды генетически близкие характеризуются сходными рядами наследственной изменчивости, с такой правильностью, что, зная ряд форм в пределах одного вида можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе родство, тем полнее сходство в рядах изменчивости.

Современная трактовка закона

Родственные виды, роды, семейства обладают гомологичными генами и порядками генов в хромосомах, сходство которых тем полнее, чем эволюционно ближе сравниваемые таксоны. Гомология генов у родственных видов проявляется в сходстве рядов их наследственной изменчивости (1987 г.).

Значение закона

1. Закон гомологических рядов наследственной изменчивости позволяет находить нужные признаки и варианты в почти бесконечном многообразии форм различных видов как культурных растений и домашних животных, так и их диких родичей.

2. Он дает возможность успешно осуществлять поиск новых сортов культурных растений и пород домашних животных с теми или иными требуемыми признаками. В этом заключается огромное практическое значение закона для растениеводства, животноводства и селекции.



3. Его роль в географии культурных растений сопоставима с ролью Периодической системы элементов Д. И. Менделеева в химии. Применяя закон гомологических рядов, можно установить центр происхождения растений по родственным видам со сходными признаками и формами, которые развиваются, вероятно, в одной и той же географической и экологической обстановке.

Билет 4

Наследование признаков при расхождении половых хромосом(первичное и вторичное нерасхождение Х-хромосом у дрозофиллы)

Как отмечалось ранее, при скрещивании белоглазой самки дрозофилы с красноглазым самцом вF1 все дочери имеют красные глаза, а у всех сыновей, получающих свою единственную Х -хромосому от матери, глаза белые. Однако иногда в таком скрещивании проявляются единичные красноглазые самцы и белоглазые самки, так называемые исключительные мухи с частотой 0,1-0,001%. Бриджес предположил, что появление таких «исключительных особей» объясняется тем, что у их матери во время мейоза обе Х-хромосомы попали в одно яйцо, т.е. произошло нерасхождение Х -хромосом. Каждое из таких яиц может быть оплодотворено либо спермием с Х -хромосомой, либо Y -хромосомой. В результате может образоваться 4 типа зигот: 1) с тремя Х -хромосомами –ХХХ ; 2) с двумя материнскими Х -хромосомами и Y -хромосомойХХY ; 3) с одной отцовской Х -хромосомой; 4) без Х -хромосомы, но с Y –хромосомой.

ХХY являются нормальными плодовитыми самками. ХО -самцы, но стерильны. Это показывает, что у дрозофилы Y -хромосома не содержит генов, определяющих пол. При скрещивании ХХY самок с нормальными красноглазыми самцами (XY ) Бриджес обнаружил среди потомства 4% белоглазых самок и 4% красноглазых самцов. Остальная часть потомства состояла из красноглазых самок и белоглазых самцов. Появление подобных исключительных особей автор объяснил вторичным нерасхождением Х -хромосом в мейозе, потому что самки, взятые в скрещивании (XXY ), возникли вследствие первичного нерасхождения хромосом. Вторичное нерасхождение хромосом у таких самок в мейозе наблюдается в 100 раз чаще, чем первичное.

У ряда других организмов, в том числе у человека, также известно нерасхождение половых хромосом. Из 4-х типов потомков, получающихся при нерасхождении Х -хромосом у женщин, особи, не имеющие ни одной Х -хромосомы, погибают в течение эмбрионального развития. Зиготы ХХХ развиваются у женщин, у которых чаще обычного встречаются умственные дефекты и бесплодие. Из зигот ХХY развиваются неполноценные мужчины – синдром Клайнфельтера – бесплодие, умственная отсталость, евнухоидное телосложение. Потомки с одной Х -хромосомой чаще погибают в эмбриональном развитии, редкие выжившие – женщины с синдромом Шерешевского-Тернера. Они низкого роста, инфантильны, бесплодны. У человека Y -хромосомы содержат гены, определяющие развитие организма мужского пола. При отсутствии Y -хромосомы развитие идёт по женскому типу. Нерасхождение половых хромосом у человека происходит чаще, чем у дрозофилы; в среднем на каждые 600 родившихся мальчиков приходится один с синдромом Клайнфельтера.

При сравнении признаков различных сортов культурных растений и близких к ним диких видов Μ. И. Вавилов обнаружил много общих наследственных изменений. Это позволило ему сформулировать в 1920 году закон гомологических рядов в наследственной изменчивости : генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, изучив ряд форм в пределах одного вида или рода, можно предположить Наличие форм с подобными сочетаниями признаков в пределах близких видов или родов.

Примеры, иллюстрирующие эту закономерность, такие: в пшеницы, ячменя и овса встречаются белый, красный и черный цвета колоса; в злаковых известны формы с длинными и короткими остями и др. Μ. И. Вавилов указывал, что гомологичные ряды часто выходят за пределы родов и даже семейств. Короткопалисть отмечена у представителей многих рядов млекопитающих: у крупного рогатого скота, овец, собак, человека. Альбинизм наблюдается у всех классов позвоночных животных.

Закон гомологических рядов позволяет предусмотреть возможность появления мутаций, еще неизвестных науке, которые могут использоваться в селекции для создания новых ценных для хозяйства форм. В 1920 году, когда был сформулирован закон гомологических рядов, еще не знали озимой формы твердой пшеницы, но ее существование было предусмотрено. Через несколько лет такую форму обнаружили в Туркмении. В злаков (пшеницы, ячменя, овса, кукурузы) существуют голые и пленочные зерна. Голозерний сорт проса не был известен, но существование такой формы следовало ожидать, и он был найден. В основе гомологических рядов лежит фенотипической сходство, которая возникает как результат действия одинаковых аллелей того же гена, так и действия различных генов, обусловливающих подобные цепи последовательных биохимических реакций в организме.

Закон гомологических рядов дает ключ для понимания эволюции родственных групп, облегчает поиски наследственных отклонений для селекции, в систематике дает возможность находить новые ожидаемые формы. Закон прямо касается изучения наследственных болезней человека. Вопросы лечения и профилактики наследственных болезней нельзя решить без исследования на животных с наследственными аномалиями, подобными тем, которые наблюдаются у человека. Согласно закону Μ. И. Вавилова, аналогичные наследственным болезням человека фенотипа имеют встречаться и у животных. Действительно, многие патологических состояний, выявленных у животных, могут быть моделями наследственных болезней человека. Так, у собак наблюдается гемофилия, которая сцеплена с полом. Альбинизм зарегистрирован во многих видов грызунов, кошек, собак, у ряда птиц. Для изучения мышечной дистрофии используются мыши, крупный рогатый скот, лошади, эпилепсии - кролики, крысы, мыши. Наследственная глухота существует в гвинейских свинок, мышей и собак. Недостатки строения лица человека, гомологичные "заячьей губе» и «волчьей пасти», наблюдаются в лицевом отделе черепа мышей, собак, свиней. Наследственными болезнями обмена, такими как ожирение и сахарный диабет, болеют мыши. Кроме уже известных мутаций путем воздействия мутагенных факторов можно получить в лабораторных животных много новых аномалий, подобных тем, которые встречаются у человека.

МУТАЦИОННАЯ ИЗМЕНЧИВОСТЬ

План

Отличие мутаций от модификаций.

Классификация мутаций.

Закон Н.И.Вавилова

Мутации. Понятие мутации. Мутагенные факторы.

Мутации – это внезапные, стойкие,естественные или искусственные изменения генетического материала, возникающие под действием мутагенныхфакторов .

Виды мутагенных факторов:

А) физические – радиация, температура, электромагнитные излучения.

Б) химические факторы – вещества, которые вызывают отравление организма: алкоголь, никотин, формалин.

В) биологические - вирусы, бактерии.

Отличие мутаций от модификаций

Классификация мутаций

Существует несколько классификаций мутаций.

I Классификация мутаций по значению: полезные, вредные, нейтральные.

Полезные мутации приводят к повышенной устойчивости организма и являются материалом для естественного и искусственного отбора.

Вредные мутации снижают жизнеспособность и приводят к развитию наследственных заболеваний: гемофилия, серповидная клеточная анемия.

II Классификация мутаций по локализации или месту возникновении: соматические и генеративные.

Соматические возникают в клеткахтела и затрагивают лишь часть тела, при этом развиваются особи мозаики: разные глаза, окраска волос. Эти мутации наследуются только при вегетативном размножении (у смородины).

Генеративные происходят в половых клетках или в клетках, из которых образуются гаметы. Они делятся на ядерные и внеядерные (митохондриальные, пластидное).

III Мутации по характеру изменения генотипа: хромосомные, геномные, генные.

Генные (или точковые) не видны в микроскоп, связаны с изменением структуры гена. Эти мутации происходят в результате потери нуклеотида, вставки или замены одного нуклеотида другим. Эти мутации приводят к генным болезням: дальтонизму, фенилкетонурии.

Хромосомные (перестройки ) связаны с изменением структуры хромосом. Может произойти:

Делеция: - потеря участка хромосомы;

Дупликация – удвоение участка хромосомы;

Инверсия – поворот части хромосомы на 180 0 ;

Транслокация – обмен участками негомологичных хромосом и слияние двух негомологичных хромосом в одну.

Причины хромосомных мутаций : возникновение двух или более разрывов хромосом с последующим их соединением, но в неправильном порядке.

Геномные мутации приводят к изменению числа хромосом. Различают гетероплоидию и полиплоидию.

Гетероплоидия связана с изменением числом хромосом, на нескольких хромосомах – 1.2.3. Причины : не расхождение хромосом в мейозе:

- Моносомия – уменьшением числа хромосом на 1 хромосому. Общая формула хромосомного набора 2n-1.

- Трисономия – увеличение числа хромосом на 1. Общая формула 2n+1 (47 хромосом Синдром Кланфейтера; трисономия по 21 паре хромосом – синдром Дауна (признаки множественные врожденные пороки, снижающие жизнеспособность организма и нарушение умственного развития).

Полиплодия – кратное изменение числа хромосом. У полиплоидных организмов гаплоидный (n) набор хромосом в клетках повторяется не 2 раза, как у диплоидных, а 4-6 раз, иногда значительно больше – до 10-12 раз.

Возникновение полиплоидов связано с нарушением митоза или мейоза. В частности, не расхождение гомологичных хромосом в мейозе приводит к формированию гамет с увеличенным числом хромосом. У диплоидных организмов в результате такого процесса могут образовываться диплоидные (2n) гаметы.

Широко встречается у культурных растений: гречихи, подсолнуха и т.д., а так же у дикорастущих.

Закон Н.И.Вавилова (закон гомологичных рядов наследственной изменчивости).

/С давних времен исследователи наблюдали существование сходных признаков у разных видов и родов одного семейства, например дыни, похожие на огурцы, или арбузы, похожие на дыни. Эти факты легли в основу закона гомологических рядов в наследственной изменчивости./

Множественный аллелизм. Параллельная изменчивость . Ген может находиться более чем в двух состояниях. Разнообразие аллелей одного гена получило название множественного аллелизма . Разные аллели определяют разную степень одного и того же признака. Чем больше аллелей несут особи популяций, тем более пластичен вид, лучше приспособлен к меняющимся условиям среды обитания.

Множественный аллелизм лежит в основе параллельной изменчивости – явления, при котором возникают сходные признаки у разных видов и родов одного семейства. Систематизировал факты параллельной изменчивости Н.И.Вавилов./

Н.И.Вавилов сравнивал виды семейства Злаки. Он выяснил, что если мягкая пшеница имеет формы озимые и яровые, остистые и безостые, то такие же формы обязательно обнаруживаются и у твердой пшеницы. Более того, состав признаков. По которым различаются формы внутри вида и рода, оказывается часто таким же в других родах. Например, формы ржи и ячменя повторяют формы разных видов пшеницы, причем образуя те же параллельные, или гомологичные ряды наследственной изменчивости.

Систематизация фактов позволила Н.И.Вавилову сформулировать закон гомологичных рядов в наследственной изменчивости (1920г): виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью. Что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

Гомологичность наследственных признаков близких видов и родов объясняется гомологичностью их генов, так как они произошли от одного вида-родоначальника. Кроме того, мутационный процесс у генетически близких видов протекает сходно. Поэтому у них возникают сходные серии рецессивных аллелей и в результате – параллельные признаки.

Вывод из закона Вавилова : каждый вид имеет определенные границы мутационной изменчивости. К изменениям, выходящим за пределы спектра наследственной изменчивости вида, никакой мутационный процесс привести не может. Так, у млекопитающих мутации могут изменить цвет шерсти от черного к бурому, рыжему, белому, может возникнуть полосатость, пятнистость, но возникновение зеленой окраски исключено.

Гомологических рядов в наследственной изменчивости закон , открытая рус. генетиком Н.И. Вавиловым в 1920 г. закономерность, устанавливающая параллелизм (сходство) в наследственной (генотипической) изменчивости у родственных организмов. В формулировке Вавилова закон гласит: «Виды и роды, генетически близкие между собой, характеризуются тождественными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм для одного вида, можно предвидеть нахождение тождественных форм у других видов и родов». При этом, чем ближе родство между видами, тем полнее сходство (гомология) в рядах их изменчивости. В законе обобщён огромный материал по изменчивости растений (злаков и других семейств), но он оказался справедливым и для изменчивости животных и микроорганизмов.

Явление параллельной изменчивости у близких родов и видов объясняется общностью их происхождения и, следовательно, наличием у них в значительной части одинаковых генов, полученных от общего предка и не изменившихся в процессе . При мутациях эти гены дают сходные признаки. Параллелизм в генотипической изменчивости у родственных видов проявляется параллелизмом фенотипической изменчивости, т. е. сходными признаками (фенотипами).

Закон Вавилова является теоретической основой при выборе направлений и методов для получения хозяйственно-ценных признаков и свойств у культурных растений и домашних животных.







2024 © vadimavva.ru.